

MP Biomedicals, LLC

29525 Fountain Parkway Solon, Ohio 44139

Telephone: 440/337-1200 Toll Free: 800/854-0530 Fax: 440/337-1180

mailto: biotech@mpbio.com
web: http://www.mpbio.com

TECHNICAL INFORMATION

Catalog Number: 103130, 103132, 103133, 152176, 194557, 194558, 194855, 194856, 195605, 816100, 819620, 819623,

819638

Tris and Tris hydrochloride

Structures:

Molecular Formula:

Free Base: C₄H₁₁NO₃Molecular Weight: 121.1

Hydrochloride: C₄H₁₁NO₃·HClMolecular Weight: 157.6

CAS#

Free Base: 77-86-1 Hydrochloride: 1185-53-1

Synonyms: Tris-[hydroxymethyl]aminomethane; THAM; 2-Amino-2-(hydroxymethyl)- 1,3-propandiol; Tromethamine;

Trometamol

pH of a 0.05 M aqueous Solution:

Free Base: 10.4 Hydrochloride: 4.7

pKa (Tris Base): 8.1 at 25°C

Description: Tris and Tris Hydrochloride have been useful as buffers in a wide variety of biological systems. Uses include pH control *in vitro*^{1,2} and *in vivo*^{3,4} for body fluids and in buffering systems for electrophoresis applications.^{2,11} Tris has been used as a starting material for polymers, oxazolones (with carboxylic acids) and oxazolidines (with aldehydes).⁶ Tris does not precipitate calcium salts and is of value in maintaining solubility of manganese salts.⁷ It can be used for the direct standardization of a strong acid solution; the equivalence point can be determined either potentiometrically or by use of a suitable indicator such as 3-(4-Dimethylamino-1-naphthylazo)-4-methoxybenzenesulfonic acid (MP # 157794). Tris is relatively non-hygroscopic; however, if needed, Tris Base can be dried at 100°C for up to 4 hours to remove any water. Neither Tris Base or Tris Hydrochloride by themselves provide adequate buffering capacity. Generally the two need to be mixed

ogether to provide a buil	at Temperature	d 9 to provide adequate buffering. Typical mixtures would be: M Solution		
pH			g/L for 0.05	
5°C	25°C		Tris HCI	Tris Base
		37°C		
7.76	7.20		7.02	0.67
		6.91		
7.89	7.30		6.85	0.80
		7.02		
7.97	7.40		6.61	0.97
		7.12		
8.07	7.50		6.35	1.18
		7.22		
8.18	7.60		6.06	1.39

7.30

	1		1
7.70		5.72	1.66
7.00	7.40	F 22	1.07
7.80	7.52	5.32	1.97
7.90		4.88	2.30
	7.62		
8.00		4.44	2.65
0.40	7./1	4.00	0.07
8.10	7 80	4.02	2.97
8.20	7.00	3.54	3.34
	7.91		1
8.30		3.07	3.70
	8.01		
8.40	0.40	2.64	4.03
9.50	8.10	2.24	4.36
6.50	8.22	2.21	4.30
8.60	J	1.83	4.65
	8.31		1
8.70		1.50	4.90
	8.42		
8.80	0.54	1.23	5.13
0.00	8.51	0.00	5.00
8.90	8 62	0.96	5.32
9.00	5.52	0.76	5.47
	7.80 7.90 8.00 8.10 8.20 8.30 8.40 8.50 8.60	7.80 7.80 7.52 7.90 7.62 8.00 7.71 8.10 7.80 8.20 7.91 8.30 8.40 8.40 8.50 8.50 8.22 8.60 8.31 8.70 8.42 8.80	7.80 7.40 7.52 4.88 7.62 4.88 8.00 4.44 7.71 4.02 8.10 7.80 8.20 3.54 7.91 3.07 8.30 3.07 8.40 2.64 8.50 2.21 8.60 1.83 8.70 1.50 8.80 1.23 8.90 0.96

Alternatively, Tris buffers can be made by using Tris Base and titrating with a hydrochloric acid solution to the desired pH value. **Effects of Temperature on pH:** As Tris solutions decrease in temperature from 25°C to 5°C, the pH value increases an average of 0.03 units per °C. As the solution increases in temperature from 25°C to 37°C, the pH decreases an average of 0.025 units per °C.

Effects of Concentration on pH: Increasing the total Tris concentration from 0.05 M to 0.5 M will increase the pH by about 0.05. Decreasing the concentration from 0.05 M to 0.005 M will decrease the pH by about 0.05.

Sterilization of Solutions: Tris solutions can be autoclaved (121°C, 15 psi, 15 minutes) or sterile filtered.

Solubility (Tris Base): Soluble in water (550 mg/ml), ethylene glycol (79.1 mg/ml), methanol (26 mg/ml), anhydrous ethanol (14.6 mg/ml), 95% ethanol (22.0 mg/ml), DMF (14 mg/ml), acetone (2 mg/ml), ethyl acetate (0.5 mg/ml), olive oil (0.4 mg/ml), and chloroform (0.05 mg/ml)

Ava	111	40)	III V

Catalog Number	Description	Size
819620	Tris, Ultra Pure	500 g
819623	Purity: Not less than 99.9%	1 kg
819638		5 kg
103133	Tris	100 g
	Purity: Not less than 99.95%	250 g
		500 g
		1 kg
		5 kg
		10 kg
194557	Tris, Cell Culture Reagent	100 g
		500 g
		1 kg
		5 kg
194855	Tris, Molecular Biology Reagent	100 g
		250 g
		500 g
		1 kg
		5 kg
195605	Tris, U.S.P. Grade	50 g
	Purity: Not less than 99.95%	100 g
		500 g
		1 kg

152176	Tris Purity: Approximately 99.0% to 99.5%	100 g 250 g 500 g 1 kg 5 kg 10 kg
103132	Tris, Technical Grade Purity: Not less than 96%	500 g 1 kg 5 kg 25 kg
103130	Tris Hydrochloride Purity: Not less than 99%	100 g 250 g 500 g 1 kg 5 kg
816100	Tris Hydrochloride Purity: Not less than 99%	1 kg
194558	Tris Hydrochloride, Cell Culture Reagent	100 g 500 g 1 kg 5 kg
194856	Tris Hydrochloride, Molecular Biology Reagent	100 g 250 g 500 g

References:

- Bates, R.G., Vega, C.A. and White, D.R., Anal. Chem., v. 50, 1295 (1978).
- Nahas, G.G., Ann. N.Y. Acad. Sci., v. 92, 333-812 (1961).
- Nahas, G.G., Pharm. Rev., v. 14, 447 (1962).
- Nahas, G.G., "Use of an organic carbon dioxide buffer in vivo." *Science*, v. 129, 782 (1959).
 Manfredi, F., Seiker, H.O, Spoto, A.P. and Saltzman, H.A., "Severe carbon dioxide intoxication." *JAMA*, v. 173, 999 (1960).
- Frump, J.A., Chem. Rev., v. 71, 483-505 (1971).
- McFarland, W.N. and Norris, K.S., "The control of pH by buffers in fish transport." California Fish and Game, v. 44 (4291) (1958).
- Fossum, J.H., Markunas, P.C. and Riddick, J.A., "Tris(hydroxymethyl) aminomethane as an acidimetric standard." Anal. Chem., v. 23, 491 (1951).
- Bates, R.G. and Pinching, G.D., *J. Research Natl. Bur. Standards*, v. 43, 519 (1949).
 Ryan, M.F, *Science*, v. 165, 851 (1969).
- Anal. Chem., v. 37 (10), 1291 (1965).
- Merck Index, 12th Ed., No. 9902.