

MP Biomedicals, LLC

29525 Fountain Parkway Solon, Ohio 44139

Telephone: 440/337-1200 Toll Free: 800/854-0530 Fax: 440/337-1180 mailto: biotech@mpbio.com web: http://www.mpbio.com

TECHNICAL INFORMATION

Catalog Number: 103130, 103132, 103133, 152176, 194557, 194558, 194855, 194856, 195605, 816100, 819620, 819623, 819638 Tris and Tris hydrochloride

Structures:			
Free Base:Hy	drochlo	ride:	
NH	-222 C	ICI	
но	он он	но	
	но	~	NH3 OH

Molecular Formula:

Free Base: C₄H₁₁NO₃Molecular Weight: 121.1 Hydrochloride: C₄H₁₁NO₃·HCIMolecular Weight: 157.6

CAS

Free Base: 77-86-1 Hydrochloride: 1185-53-1

Synonyms: Tris-[hydroxymethyl]aminomethane; THAM; 2-Amino-2-(hydroxymethyl)- 1,3-propandiol; Tromethamine; Trometamol **pH of a 0.05 M aqueous Solution:**

Free Base: 10.4 Hydrochloride: 4.7

pKa (Tris Base): 8.1 at 25°C

Description: Tris and Tris Hydrochloride have been useful as buffers in a wide variety of biological systems. Uses include pH control *in vitro*^{1,2} and *in vivo*^{3,4} for body fluids and in buffering systems for electrophoresis applications.^{2,11} Tris has been used as a starting material for polymers, oxazolones (with carboxylic acids) and oxazolidines (with aldehydes).⁶ Tris does not precipitate calcium salts and is of value in maintaining solubility of manganese salts.⁷ It can be used for the direct standardization of a strong acid solution; the equivalence point can be determined either potentiometrically or by use of a suitable indicator such as 3-(4-Dimethylamino-1-naphthylazo)-4-methoxybenzenesulfonic acid (MP # 157794). Tris is relatively non-hygroscopic; however, if needed, Tris Base can be dried at 100°C for up to 4 hours to remove any water. Neither Tris Base or Tris Hydrochloride by themselves provide adequate buffering capacity. Generally the two need to be mixed together to provide a buffer with pH between 7 and 9 to provide adequate buffering. Typical mixtures would be:

pH	at Temperature		g/L for 0.05	M Solution
5°C	25°C		Tris HCI	Tris Base
		37°C		
7.76	7.20		7.02	0.67
		6.91		
7.89	7.30		6.85	0.80
		7.02		
7.97	7.40		6.61	0.97
		7.12		
8.07	7.50		6.35	1.18
		7.22		
8.18	7.60		6.06	1.39

	5.72	1.66
7.40		
7.52	5.32	1.97
	4.88	2.30
7.62	4.44	0.05
7.71	4.44	2.65
	4.02	2.97
7.80	3.54	3.34
7.91	5.54	5.54
	3.07	3.70
8.01	2.64	4.03
8.10	2.04	4.00
8.22	2.21	4.36
0.22	1.83	4.65
8.31		
8.42	1.50	4.90
	1.23	5.13
8.51		
8.62	0.96	5.32
	0.76	5.47
	8.51 8.62 8.70	8.51 0.96 8.62 0.76

Alternatively, Tris buffers can be made by using Tris Base and titrating with a hydrochloric acid solution to the desired pH value. **Effects of Temperature on pH:** As Tris solutions decrease in temperature from 25°C to 5°C, the pH value increases an average of 0.03 units per °C. As the solution increases in temperature from 25°C to 37°C, the pH decreases an average of 0.025 units per °C.

Effects of Concentration on pH: Increasing the total Tris concentration from 0.05 M to 0.5 M will increase the pH by about 0.05. Decreasing the concentration from 0.05 M to 0.005 M will decrease the pH by about 0.05.

Sterilization of Solutions: Tris solutions can be autoclaved (121°C, 15 psi, 15 minutes) or sterile filtered.

Solubility (Tris Base): Soluble in water (550 mg/ml), ethylene glycol (79.1 mg/ml), methanol (26 mg/ml), anhydrous ethanol (14.6 mg/ml), 95% ethanol (22.0 mg/ml), DMF (14 mg/ml), acetone (2 mg/ml), ethyl acetate (0.5 mg/ml), olive oil (0.4 mg/ml), and chloroform (0.05 mg/ml)

Availability:

Catalog Number	Description	Size
819620	Tris, Ultra Pure	500 g
819623	Purity: Not less than 99.9%	1 kg
819638		5 kg
103133	Tris	100 g
	Purity: Not less than 99.95%	250 g
		500 g
		1 kg
		5 kg
		10 kg
194557	Tris, Cell Culture Reagent	100 g
		500 g
		1 kg
		5 kg
194855	Tris, Molecular Biology Reagent	100 g
		250 g
		500 g
		1 kg
		5 kg
195605	Tris, U.S.P. Grade	50 g
	Purity: Not less than 99.95%	100 g
	-	500 g
		1 kg

152176	Tris Purity: Approximately 99.0% to 99.5%	100 g 250 g 500 g 1 kg 5 kg 10 kg
103132	Tris, Technical Grade Purity: Not less than 96%	500 g 1 kg 5 kg 25 kg
103130	Tris Hydrochloride Purity: Not less than 99%	100 g 250 g 500 g 1 kg 5 kg
816100	Tris Hydrochloride Purity: Not less than 99%	1 kg
194558	Tris Hydrochloride, Cell Culture Reagent	100 g 500 g 1 kg 5 kg
194856	Tris Hydrochloride, Molecular Biology Reagent	100 g 250 g 500 g

References:

- Bates, R.G., Vega, C.A. and White, D.R., Anal. Chem., v. 50, 1295 (1978).
- Nahas, G.G., Ann. N.Y. Acad. Sci., v. 92, 333-812 (1961).
- Nahas, G.G., Pharm. Rev., v. 14, 447 (1962).

Nahas, G.G., "Use of an organic carbon dioxide buffer in vivo." *Science*, v. 129, 782 (1959).
Manfredi, F., Seiker, H.O, Spoto, A.P. and Saltzman, H.A., "Severe carbon dioxide intoxication." *JAMA*, v. 173, 999 (1960). - Frump, J.A., Chem. Rev., v. 71, 483-505 (1971).

- McFarland, W.N. and Norris, K.S., "The control of pH by buffers in fish transport." California Fish and Game, v. 44 (4291) (1958).

- Fossum, J.H., Markunas, P.C. and Riddick, J.A., "Tris(hydroxymethyl) aminomethane as an acidimetric standard." Anal. Chem., v. 23, 491 (1951).

- Bates, R.G. and Pinching, G.D., J. Research Natl. Bur. Standards, v. 43, 519 (1949).
 Ryan, M.F, Science, v. 165, 851 (1969).
- Anal. Chem., v. 37 (10), 1291 (1965).
- Merck Index, 12th Ed., No. 9902.